Copied to
clipboard

G = C23.1D10order 160 = 25·5

1st non-split extension by C23 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.1D10, C22.2D20, C53(C23⋊C4), C22⋊C41D5, (C2×Dic5)⋊1C4, (C2×C10).27D4, (C22×D5)⋊1C4, C23.D51C2, C22.3(C4×D5), C22.8(C5⋊D4), C2.4(D10⋊C4), C10.13(C22⋊C4), (C22×C10).5C22, (C5×C22⋊C4)⋊1C2, (C2×C5⋊D4).1C2, (C2×C10).21(C2×C4), SmallGroup(160,13)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C23.1D10
C1C5C10C2×C10C22×C10C2×C5⋊D4 — C23.1D10
C5C10C2×C10 — C23.1D10
C1C2C23C22⋊C4

Generators and relations for C23.1D10
 G = < a,b,c,d | a2=b2=c20=1, d2=a, cac-1=ab=ba, ad=da, bc=cb, bd=db, dcd-1=ac-1 >

2C2
2C2
2C2
20C2
4C4
4C22
10C22
10C4
20C4
20C22
2C10
2C10
2C10
4D5
2C2×C4
5C23
5C2×C4
10C2×C4
10D4
10D4
2Dic5
2D10
4Dic5
4D10
4C2×C10
4C20
5C22⋊C4
5C2×D4
2C2×C20
2C5⋊D4
2C5⋊D4
2C2×Dic5
5C23⋊C4

Smallest permutation representation of C23.1D10
On 40 points
Generators in S40
(1 30)(3 32)(5 34)(7 36)(9 38)(11 40)(13 22)(15 24)(17 26)(19 28)
(1 30)(2 31)(3 32)(4 33)(5 34)(6 35)(7 36)(8 37)(9 38)(10 39)(11 40)(12 21)(13 22)(14 23)(15 24)(16 25)(17 26)(18 27)(19 28)(20 29)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)
(1 24 30 15)(2 23)(3 13 32 22)(4 12)(5 40 34 11)(6 39)(7 9 36 38)(10 35)(14 31)(16 20)(17 28 26 19)(18 27)(21 33)(25 29)

G:=sub<Sym(40)| (1,30)(3,32)(5,34)(7,36)(9,38)(11,40)(13,22)(15,24)(17,26)(19,28), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,40)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,24,30,15)(2,23)(3,13,32,22)(4,12)(5,40,34,11)(6,39)(7,9,36,38)(10,35)(14,31)(16,20)(17,28,26,19)(18,27)(21,33)(25,29)>;

G:=Group( (1,30)(3,32)(5,34)(7,36)(9,38)(11,40)(13,22)(15,24)(17,26)(19,28), (1,30)(2,31)(3,32)(4,33)(5,34)(6,35)(7,36)(8,37)(9,38)(10,39)(11,40)(12,21)(13,22)(14,23)(15,24)(16,25)(17,26)(18,27)(19,28)(20,29), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40), (1,24,30,15)(2,23)(3,13,32,22)(4,12)(5,40,34,11)(6,39)(7,9,36,38)(10,35)(14,31)(16,20)(17,28,26,19)(18,27)(21,33)(25,29) );

G=PermutationGroup([[(1,30),(3,32),(5,34),(7,36),(9,38),(11,40),(13,22),(15,24),(17,26),(19,28)], [(1,30),(2,31),(3,32),(4,33),(5,34),(6,35),(7,36),(8,37),(9,38),(10,39),(11,40),(12,21),(13,22),(14,23),(15,24),(16,25),(17,26),(18,27),(19,28),(20,29)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)], [(1,24,30,15),(2,23),(3,13,32,22),(4,12),(5,40,34,11),(6,39),(7,9,36,38),(10,35),(14,31),(16,20),(17,28,26,19),(18,27),(21,33),(25,29)]])

C23.1D10 is a maximal subgroup of
C23⋊C45D5  C23⋊D20  C23.5D20  D5×C23⋊C4  (C2×D20)⋊25C4  C242D10  C22⋊C4⋊D10  (C2×C6).D20  C159(C23⋊C4)  C23.6D30
C23.1D10 is a maximal quotient of
(C2×D20)⋊C4  C4⋊Dic5⋊C4  C23.30D20  C53(C23⋊C8)  (C2×Dic5)⋊C8  C22.2D40  C53C2≀C4  (C2×C20).D4  C23.D20  C23.2D20  C23.3D20  C23.4D20  (C2×C4).D20  (C2×Q8).D10  C24.2D10  (C2×C6).D20  C159(C23⋊C4)  C23.6D30

31 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E5A5B10A···10F10G10H10I10J20A···20H
order122222444445510···101010101020···20
size112222044202020222···244444···4

31 irreducible representations

dim11111122222244
type+++++++++
imageC1C2C2C2C4C4D4D5D10C4×D5D20C5⋊D4C23⋊C4C23.1D10
kernelC23.1D10C23.D5C5×C22⋊C4C2×C5⋊D4C2×Dic5C22×D5C2×C10C22⋊C4C23C22C22C22C5C1
# reps11112222244414

Matrix representation of C23.1D10 in GL4(𝔽41) generated by

40000
04000
0010
0001
,
40000
04000
00400
00040
,
0001
00406
351800
232000
,
351800
23600
0001
0010
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,1,0,0,0,0,1],[40,0,0,0,0,40,0,0,0,0,40,0,0,0,0,40],[0,0,35,23,0,0,18,20,0,40,0,0,1,6,0,0],[35,23,0,0,18,6,0,0,0,0,0,1,0,0,1,0] >;

C23.1D10 in GAP, Magma, Sage, TeX

C_2^3._1D_{10}
% in TeX

G:=Group("C2^3.1D10");
// GroupNames label

G:=SmallGroup(160,13);
// by ID

G=gap.SmallGroup(160,13);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,121,31,362,297,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^20=1,d^2=a,c*a*c^-1=a*b=b*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=a*c^-1>;
// generators/relations

Export

Subgroup lattice of C23.1D10 in TeX

׿
×
𝔽